
JOURNAL OF SELECTED AREAS IN COMMUNICATIONS 1

A Peer-to-Peer Architecture for Media Streaming
Duc A. Tran, Member, IEEE, Kien A. Hua, Senior Member, IEEE, and Tai T. Do

Abstract— We have witnessed the success of peer-to-peer (P2P)
applications in both commercial and research fields. However,
a practical area has received little attention in the context of
P2P to date: media streaming. Given the fact that the current
Internet does not widely support IP Multicast while content-
distribution-networks technologies are costly, P2P could be a
promising start for enabling large-scale streaming systems. In our
so-called Zigzag approach, we propose a method for clustering
peers into a hierarchy called the administrative organization for
easy management, and a method for building the multicast tree
atop this hierarchy for efficient content transmission. In Zigzag,
the multicast tree has a height logarithmic with the number of
clients, and a node degree bounded by a constant. This helps
reduce the number of processing hops on the delivery path to
a client while avoiding network bottleneck. Consequently, the
end-to-end delay is kept small. Although one could build a tree
satisfying such properties easily, an efficient control protocol
between the nodes must be in place to maintain the tree under
the effects of network dynamics. Zigzag handles such situations
gracefully requiring a constant amortized worst-case control
overhead. Especially, failure recovery is done regionally with
impact on at most a constant number of existing clients and
with mostly no burden on the server.

Index Terms— Application-Layer Multicast, Media Streaming,
Peer to Peer.

I. INTRODUCTION

Peer-to-peer (P2P) computing has been of interest for quite
long and numerous file-sharing systems based on its concepts
have been developed [1]. In this paper, we investigate the
applicability of P2P to the problem of streaming live media.
In the P2P streaming architecture, the delivery tree is built
rooted at the source and including all and only the receivers.
A subset of receivers get the content directly from the source
and the others get it from the receivers in the upstream.
Consequently, this paradigm promises to address many critical
problems in large-scale streaming systems: (1) the network
bandwidth bottleneck at the media source; (2) the cost of
deploying extra servers, which would be incurred in content
distribution networks; and (3) the infeasibility of IP Multicast
on the current Internet [2]. Building an efficient P2P streaming
scheme, however, is truly a challenge due to several issues,
including the following:

1) The end-to-end delay from the source to a receiver
may be excessive because the content may have to go
through a number of intermediate receivers. To shorten
this delay (whereby, increasing the liveness of the media
content), the tree height should be kept small and the
join procedure should finish fast. The end-to-end delay
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may also be long due to an occurrence of bottleneck at
a tree node. The worst bottleneck happens if the tree
is a star rooted at the source. The bottleneck is most
reduced if the tree is a chain, however in this case the
leaf node experiences a long delay. Therefore, apart from
enforcing the tree to be short, it is desirable to have the
node degree bounded.

2) The behavior of receivers is unpredictable; they are free
to join and leave the service at any time, thus abandoning
their descendant peers. To prevent service interruption,
a robust technique has to provide a quick and graceful
recovery should a failure occur.

3) Receivers may have to store some local data structures
and exchange state information with each other to main-
tain the connectivity and improve the efficiency of the
P2P network. The control overhead at each receiver
for fulfilling such purposes should be small to avoid
excessive use of network resources and to overcome the
resource limitation at each receiver. This is important
to the scalability of a system with a large number of
receivers.

There are other concerns that make P2P streaming hard
to implement, such as how to deal with security and client
heterogeneity. We will investigate such problems as part of
our future work. In this paper, we only address the three issues
listed above. Specifically, we propose a solution called Zigzag.
Zigzag organizes receivers into a hierarchy of clusters and
builds the multicast tree atop this hierarchy according to a set
of rules called C-rules. A cluster has a head and an associate-
head, the head responsible for monitoring the memberships of
the cluster and the associate-head responsible for transmitting
the content to cluster members. Therefore, the failure of the
head does not affect the service continuity of other members,
or in case the associate-head departs, the head is still working
and can designate a new associate-head quickly. In summary,
Zigzag provides the following desirable features (here, � is
the number of the receivers):
� No matter how � can grow, the node degree in the

multicast tree is always bounded by a constant.� The multicast tree’s height is bounded by O( �����	� ).� Failure recovery can be done regionally with only impact
on at most a constant number of existing receivers and
mostly no burden on the source. This is an important
benefit because the source is usually overwhelmed by
huge requests from the network.� The protocol control overhead is low. A receiver needs to
exchange control information to O( �����	� ) other receivers
in the worst case. On average, it communicates with at
most a constant number of other receivers.� The join procedure is fast, and the maintenance overhead
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for the cluster structures is small and independent of � .
Several previous solutions [3], [4], [5] to our problem can

provide a subset of the above features, but none can achieve
all. The promising performance of Zigzag is substantiated by
both theoretical and simulation analyses which also include
a comparison with a recent method [3]. The results indicate
that Zigzag is indeed a scalable, robust, and efficient solution,
especially for large-scale P2P streaming systems.

Zigzag is best applicable to the streaming applications such
as a single media server broadcasting a live long-term sport
event to many clients, each staying in the system for a long-
enough period. Another application can be found in a sensor
network where the live monitored data is broadcast from the
sensing site to many distant nodes for processing. In the next
section, we present a design for the Zigzag approach and an
alternative of its. We also report the results from our simulation
study. The related works are discussed afterwards, and finally,
this paper is concluded with a summary.

II. ZIGZAG APPROACH

For the ease of exposition, we refer to the media source as
the server and receivers as clients. They all are referred to as
“peers”. In this section, we propose a scheme called Zigzag
which consists of two important entities: the administrative
organization representing the logical relationships among the
peers, and the multicast tree representing the physical relation-
ships among them (i.e., how peers link together to receive the
content). Firstly, we describe the administrative organization.
Secondly, we propose how the multicast tree is built based on
this organization, and then the control protocol in which peers
exchange state information. Finally, we propose policies to
adjust the tree as well as the administrative organization upon
a client join/departure, and discuss performance optimization
issues.

A. Administrative Organization

An administrative organization is used to manage the peers
currently in the system and illustrated in Fig. 1(a). Peers are
organized in a multi-layer hierarchy of clusters recursively
defined as follows (where 
 is the number of layers, ��
3 is a constant):

(1) Layer 0 contains all peers.
(2) Peers in layer ����
���� are partitioned into clusters

of sizes in [ � , ��� ]. Layer 
���� has only one cluster of size
in [2, ��� ].

(3) A peer in a cluster at layer � is selected to be the head
of that cluster. This head automatically becomes a member of
layer � + 1 if ����
���� . The server � is the head of any
cluster it belongs to.

(4) A non-head peer in a cluster at layer � is selected to
be the associate-head of that cluster. An exception holds for
the highest layer where the server is both the head and the
associate-head.

As an example, in Fig. 1(a), at the highest layer (i.e., layer

 -1), the server � is both the head and the associate-head.
Peer � is the associate-head of a cluster at layer 
 - 2, and
the head of a cluster at layer 
 - 3. Peer 4 is the head of a

cluster at layer 
 -2, thus also belonging to layer 
 -1. The
role of the associate-head will become clear when we discuss
the multicast tree in the next section.

Initially, when the number of peers is small, the administra-
tive organization has only one layer containing one cluster. As
clients join or leave, this organization will grow or shrink. The
cluster size is upper bounded by ��� because we might have
to split a cluster later when it becomes oversize. If the cluster
size was upper bounded by ��� (instead of ��� ) and the current
size was ���! "� , after the splitting, the two new clusters would
have sizes � and �# $� and be prone to be undersize as peers
leave.

The above structure implies 
&% [ �'����(*)+� , ������)+� +1] for �, � , where � is the number of peers. Additionally, any peer
at a layer �-�$. must be the head of the cluster it belongs to at
every lower layer. We note that this hierarchy is an extension
of the one proposed in [3] and employed in [6], [7]. The
difference in our definition is the new concept of “associate-
head”. Furthermore, we propose novel and better solutions to
map peers into the administrative organization, to build the
multicast tree based on it, and to update these two structures
under network dynamics. Those are our main contributions.

Fig. 1(b) illustrates the terms we use for the rest of the
paper:
� Subordinate: Non-head peers of a cluster headed by a

peer / are called “subordinates” of / . E.g., in Fig. 1(a),
peers 1, 2, and 3 are subordinates of peer 4; peers 4, 5,
6, and 7 are subordinates of the server.� Foreign head: A non-head clustermate 0 of a peer / at
layer �$� 0 is called a “foreign head” of layer-(� - 1)
subordinates of / . E.g., in Fig. 1(a), peer 4 is a foreign
head of peers 5, 6, and 7.� Foreign subordinate: The layer-(� -1) associate-head of /
is called a “foreign subordinate” of 0 mentioned above.
E.g., in Fig. 1(a), peer 5 is a foreign subordinate of peer
4.� Foreign cluster: The layer-(� -1) cluster of / is called a
“foreign cluster” of 0 mentioned above. E.g., in Fig. 1(a),
the layer-( 
 -3) cluster whose head is peer 1 is a foreign
cluster of peers 2, 3, and 4.� Super cluster: Suppose that the head of a cluster 1
appears in a cluster 2 at the next higher layer. We call
2 the “super cluster” of 1 .

B. Multicast Tree

The multicast tree is built based on the administrative
organization. In this section, we propose rules to which the
multicast tree must be confined and explain the rationale
behind that. The join, departure, and optimization policies
must follow these rules. We call these rules C-rules1 and define
them below (demonstrated by Fig. 2(a)):

Definition 1: [C-Rules]
� Rule 1: A peer, when not at its highest layer, neither has

a link out nor a link in. E.g., peer 4 at layer 1 and layer

1“C” stands for “connectivity”. Due to these rules, content goes zigzag from
the server to any peer, not through the cluster heads, we name the proposed
approach “Zigzag”.
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Fig. 1. Administrative organization of peers and relationships among them
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Fig. 2. The multicast tree atop the administrative organization ( 3 = 3, 4 = 4) and its view in another perspective

0 has neither outgoing link nor incoming link because its
highest layer is layer 2.� Rule 2: Non-head members of a cluster must receive the
content directly from its associate-head. In other words,
this associate-head links to every other non-head member
of the cluster. E.g., in a cluster at layer 1, associate-head
3 links to non-head members 1 and 2; in a cluster at layer
0, associate-head 8 links to non-head members 9 and 10.� Rule 3: The associate-head of a cluster, except for the
server, must get the content directly from a foreign head.
E.g., the associate-head 8 of a cluster at layer 0 has a link
from peer 2 who is a foreign head of 8; the associate-
head 5 of a cluster at layer 1 has a link from its foreign
head 4.

It is trivial to prove the above rules guarantee a tree structure
including all the peers. Fig. 2(a) gives an example of a 31-
client multicast tree built atop the administrative organization.
This tree in another perspective is depicted in Fig. 2(b).
Hereafter, the terms “parent”, “children”, “descendant” are
used with the same meanings as applied for conventional trees.
The term “node” is used interchangeably with “peer” and
“client”. Furthermore, without otherwise specified, a “layer-�
peer” implicitly refers to a node whose highest layer is layer
� .

Theorem 1: The worst-case node degree of the multicast
tree is at most 5�� - 3.

Proof: A node has at most ( ��� - 1) foreign clusters, thus
having at most ( ��� - 1) foreign subordinates. Consider a node
/ at its highest layer � . There are three possibilities:

(1) / is the associate-head: / must link to all of its layer-�
non-head clustermates (at most ��� -2 of them) and may have
links to a subset of its foreign subordinates (at most ��� -1
of them). No other links are permitted due to the C-rules.
Therefore, the degree of / cannot exceed ( ��� -2) + ( ��� -1) =
5�� - 3.

(2) / is the head: This implies / must be the server
because it would appear at layer � +1 otherwise. Since the
server is also the associate-head at the highest layer, the degree
of the server cannot exceed 5�� - 3.

(3) / is neither the head nor the associate-head: / can
only have links to a subset of its foreign subordinates. There
are at most ��� -1 of them, hence the degree of / is at most
��� -1.

In any case, the degree of a node cannot exceed 5�� - 3, thus
proving the theorem true.

Theorem 2: The height of the multicast tree is at most
2 �'����)�� +1, where � is the number of peers.

Proof: The longest path from the server to a node must
be the path from the server to some layer-0 node. This path
visits each layer only once. In such a visit, only one link is
counted, which is from an associate-head to one of its non-
head clustermates. Therefore, the number of nodes, excluding
the server, on the path is at most twice the number of layers
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 minus one. Since 
768������)+� + 1, the path length is at
most 2 ����� ) � + 1. The theorem has been proved.

Theorems 1 and 2 summarize two properties any P2P
multicast tree should desire. Indeed, the content from the
server to any client goes through at most 2 ����� ) � intermediate
clients whose outgoing bandwidth contention is kept moderate
because each client serves no more than a small constant num-
ber of others. However, this advantage might be diminished
should the C-rules not be enforced. Therefore, as clients join
and leave, we must be able to adjust the tree without violating
the C-rules. Overheads incurred by this adjustment should be
small to keep the system scalable.

The motivation behind not using the head as the parent for
its subordinates in our approach is as follows. Suppose the
members of a cluster always get the content from their head.
If the highest layer of a node / is � , / would have links to
its subordinates at each layer, � -1, � -2, ..., 0, that it belongs
to. Since � can be 
 - 1, the worst-case node degree would
be 
:9 ( ��� - 1) = ; ( �	����� ) � ). Furthermore, the closer to the
source, the larger degree a node would have. In other words,
the bottleneck would occur very early in the delivery path.
This might not be acceptable for bandwidth-intensive media
streaming.

Our using the associate-head as the parent has another nice
property. Indeed, when the parent peer fails, the head of its
children is still working, thus helping reconnect the children
to a new parent quickly. On the other hand, if the head of
a cluster fails, the other members of that cluster will not be
affected because the head does not involve in transmitting the
content to them. We will discuss policies for failure recovery
in more detail shortly.

C. Control protocol

To maintain its position and connections in the multicast tree
and the administrative organization, each node / in a layer-�
cluster periodically exchanges control messages with its layer-
� clustermates, its children and parent on the multicast tree.
For non-head peers within the same cluster, the exchanged
information / sends is just the peer degree <	= . If the recipient
is the cluster head, / sends the following information instead:
�$> ( / ): the current end-to-end delay from the server

observed at / .� A subset of its layer-� clustermates ?A@ ( / ) = BC/D@ , /-E , .. F ,
where the occurrence of /HG represents that / is currently
forwarding the content to /IG . E.g., in Fig. 2(a), peer 5 at
layer 1 needs to send a list B 6, 7 F to the head � because
peers 6 and 7 are receiving the content from peer 5.� A subset of its layer-� clustermates ? E ( / ) = B�0 @ , 0 E , .. F ,
where the occurrence of 0 G represents that / is currently
forwarding the content to a foreign subordinate whose
head is 0 G (the subordinate must be an associate-head
according to C-rules). E.g., in Fig. 2(a), peer 5 at layer 1
needs to send a list B S, 6 F to its head � because associate-
head 20 of � and associate-head 23 of peer 6 are receiving
the content from peer 5.

If the recipient is the parent, / sends the following infor-
mation together with its degree:

� A Boolean flag JLK�MONQPRM	ST��K ( / ): true iff there exists a path
in the multicast tree from / to a layer-0 peer. E.g., in
Fig. 2(a), JLK+MONQPRMOSU��K ( V ) = false, JLK+M�NCPWM	ST�'K ( X ) = true.� A Boolean flag Y#<�<�M	ST��K ( / ): true iff there exists a path
in the multicast tree from / to a layer-0 peer whose
cluster’s size is in [ � , ��� - 1].

The values of JLK+MONQPWM	ST�'K and YZ<�<�M	ST�'K at a peer / are
updated based on the information received from its children.
For instances, if all children send “ J[K+MONQPRM	ST��K = false” to this
peer, then JLK+MONQPWM	ST�'K ( / ) is set to false; YZ<�<�MOSU��K ( / ) is set to
true if / receives “ Y#<�<�M	ST��K = true” from at least a child peer.

The theorem below tells that the control overhead for an
average member is a constant. The worst node has to commu-
nicate with O( �	������)+� ) other nodes, which is acceptable since
the information exchanged is just soft-state refreshes.

Theorem 3: Although the worst-case control overhead of
a node is O( �	�'����)�� ), the amortized worst-case overhead is
O( � ).

Proof: Consider a node / whose highest layer is � . /
belongs to (� + 1) clusters at layers 0, 1, .., � , thus having at
most (� + 1) 9 ( ��� - 1) clustermates. The number of children
of / is its degree, hence no more than 5�� - 3. Consequently,
the worst-case control overhead at / is upper bounded by (�
+ 1) 9 ( ��� - 1) + ( 5�� -3) + 1 = �\9 ( ��� - 1) + ]�� - 3. Since �
can be 
 - 1, the worst-case control overhead is O( �	�'���	)+� ).

However, the probability that a node has its highest layer to
be � is at most ( �-^_��` ) / � = �+^_��` . Thus, the amortized worst-
case overhead at an average node is at most acbZd @`fehg

i �j^k� ` 9 i �l9i ���-�m�+no �]��p�q��nrnts O( � ) with asymptotically increasing
� . Theorem 3 has been proved.

D. Client Join and Departure

The multicast tree is updated whenever a new client joins
or leaves. The new tree must not violate the C-rules specified
in Section II-B. We propose the join and departure algorithms
below.

1) Join Algorithm: A new client u submits a request to
the server. If the administrative organization currently has one
layer, u simply connects to the server. Otherwise, the join
request is redirected along the multicast tree downward until
finding a proper peer to join. A peer / pursues the below
steps on receipt of a join request: (In this algorithm, < ( 0 , u )
is the delay from 0 to u measured during the contact between
0 and u .)

1. If / is a layer-0 associate-head
1.1. Add u to the only cluster of /
1.2. Make u a new child of /
2. Else
2.1. If Y#<�<�M	ST��K ( / )
2.1.1. Select a child 0 :

Y#<�<�M	ST��K ( 0 ) and > ( 0 )+ < ( 0 , u ) is min
2.1.2. Forward the join request to 0
2.2. Else
2.2.1 Select a child 0 :

JLK+MONQPRMOSU��K ( 0 ) and > ( 0 )+ < ( 0 , u ) is min
2.2.2. Forward the join request to 0
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The goal of this procedure is to add u to a layer-0 cluster v
and force u to get the content from the associate-head of v .
Therefore, the join algorithm stops if / is already a layer-0
associate-head. Otherwise, / considers “addable” child peers
first because we want to add u to a layer-0 cluster of size [ � ,
���w�x� ] to avoid oversize. Among these “addable” children, /
chooses 0 such that > ( 0 )+ < ( 0 , u ) is minimum to keep the
delay from the server to the new peer u as small as possible. In
the case there is no “addable” child, / considers “reachable”
children and pursue the same delay minimization strategy. The
peer 0 in the above algorithm always exists since / must be
a “reachable” peer in order to receive the join request earlier.

In Step 2.1.1 or 2.2.1, u has to contact with at most <y=
peers ( <�= is the degree of / ). Since the tree height is at most
(2 �'��� ) � + 1) and the maximum degree is ( 5�� - 3), the number
of nodes that u has to contact is at most (2 �'��� ) � + 1) 9 ( 5��
- 3) = O( ��9��'��� ) � ). This proves Theorem 4 true.

Theorem 4: The join overhead is O( �z9{����� ) � ) in terms
of number of nodes to contact.

Proof: This theorem has been proved above.
The join procedure terminates at step 1.2 at some layer-0

associate-head / , which will tell u about other members of
the cluster. u then follows the control protocol as discussed
earlier. If the new size of the joined cluster is still in [ � , ��� ],
no further work is necessary. Otherwise, this cluster has to be
split so that the newly created clusters have sizes in [ � , ��� ] to
maintain the structure of the administrative organization. We
present the split algorithm in Section II-E.1.

2) Departure Algorithm: We consider a peer / who de-
parts the tree either purposely or accidentally due to a failure.
Suppose that / ’s highest layer is layer �{% [0, 
 ). As a
result of the control protocol, the parent/children peers of / ,
and all layer- | clustermates of / for |w% [0, � ] must be aware
of this departure. Basically, the following tasks are required
for recovery: (1) The parent removes the link to / ; (2) The
children need a new parent to get the content; (3) Each layer- |
cluster of / ( |#% [0, � -1]) selects a new head since the head
/ no longer exists; and (4) The layer-� cluster needs a new
associate-head if / has been its associate-head. Task (1) is
trivial; we propose the detail policies for the remaining tasks
below.

We first consider the case � = 0, thus / belongs to only one
cluster. If / is not the associate-head of this cluster, no further
work is required. Otherwise, the cluster head chooses among
its subordinates a new associate-head which will reconnect to
the current parent of / and be the parent for all the other
non-head members. The peer /\} to be the new associate-head
is the one experiencing the best end-to-end delay, i.e., > ( /�} )
is smallest. This is based on the heuristic that choosing a peer
closest to the former associate-head would have a little or no
negative impact on the service quality currently perceived by
the others.

We now consider the case �~� 0. For each foreign subordi-
nate 0 who is a child of / , the head 0��+���U� of 0 is responsible
for finding a new parent for it. 0 �+���U� just selects � , a layer-�
non-head clustermate, that has the minimum degree, and asks
it to forward data to 0 . Furthermore, since / used to be the
head of � clusters at layers 0, 1, .., � -1, they must have a

new head. This is handled easily. Let /�} be a random non-
associate-head subordinate of / at layer 0. /\} will replace /
as the new head for each of those clusters. /�} also replaces
/ ’s position at layer � . In other words, if / used to be the
associate-head, /\} now becomes the associate-head and gets a
link from the existing parent of / . If / is not associate-head,
/�} gets a link from the current associate-head of / .

Fig. 3(a) gives the resulting multicast tree and administrative
organization after peer 4 fails. The original P2P system is
given in Fig. 2(a). Peer 18 at layer 0 is selected to replace the
position of peer 4 in every cluster peer 4 used to belong to. In
this example, peer 5 first reconnects to the server because there
is no other surviving non-head peer at the highest layer; after
peer 18 replaces peer 4 at this layer, peers 5 will reconnect
to peer 18 to follow the C-rules. Another example is given in
Fig. 3(b) where peer 3, which is an associate-head, fails. Peer
15 will replace this peer, however before that peer 17 (ex-child
at layer-0 of peer 3) reconnects to peer 1 (having minimum
degree) for a quick playback resumption. Also to keep service
continuity, peers 1 and 2 first reconnect to peer 4 at layer 1
before finally connecting to peer 15 when peer 15 becomes
the associate-head in place of peer 3.

In overall, a client departure requires a few (at most one
peer at layer 0 plus ��� -1 peers at layer � -1 plus ��� -2 peers
at layer � ) to reconnect, and does not burden the server. The
overhead of failure recovery is consequently stated as follows:

Theorem 5: In the worst case, the number of peers that
need to reconnect due to a failure is 5�� -2.

Proof: This theorem has been proved above.

E. Cluster Maintenance

The administrative organization requires that the size of
any cluster, except for the highest-layer cluster, be between
� and ��� . Due to client joins and departures, some cluster
may become oversize or undersize. This cluster has to be split
into smaller clusters, or be merged with another cluster to
form a larger cluster, so that the size restriction is satisfied. In
this section, we propose algorithms for cluster split and cluster
mergence.

1) Cluster Split: Suppose we decide to split a layer-�
cluster 1 with head / ���r�U� , associate-head / �U�����*� , and the
other peers / @ , .., /H� . The goal is to create a new cluster 2
and move some peers of 1 to this cluster. The basic idea of this
split is illustrated in Fig. 4. After moving some peers into 2 ,
we need to find two peers / }�+���U� and / }�U�����*� as the head and
the associate-head, respectively. All the other members of 2
will get the content from /\}�U�r���f� . The head /�}�+���Q� will appear
in the super cluster of 1 and get a link from the associate-
head of that cluster. Furthermore, the associate-head /�}�Q�����*�
will get a link from the parent of /D�Q�����*� .

Other details of the split algorithm include determining
what peers to move from 1 to 2 and which of them to be
the head and the associate-head of 2 , and making necessary
reconnections to enforce the C-rules. There are three cases: �
= 0, ��% (0, 
 -1), and � = 
 -1.

Case 1: � = 0:
This case is handled simply by following the steps below:



JOURNAL OF SELECTED AREAS IN COMMUNICATIONS 6

L2

L1

L0

1 2
3

5

6

7
S

S

32 S 5 6 78

9 10

11

12 13

14

15 16

17

18

19

20

21 22

23

24

1

25

26

27 28

29

30 31

18

18

(a) Peer � fails

L2

L1

L0

1 2

4
5

6

7

4

S

S

42 S 5 6 78

9 10

11

12 13

1415

16

17

18 19

20

21 22

23

24

1

25

26

27 28

29

30 31

15

(b) Peer 3 fails

Fig. 3. Failure Recovery: The original P2P tree is given in Fig. 2(a)
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Fig. 4. Cluster Split: A cluster is split into two smaller clusters, each of size between 4 and �T4

(1) Sort BC/D@ , .., / � F in the non-increasing order of end-
to-end delay > (.). Suppose the resulting list is B�/�}@ , .., /�}� F .
Move the first ��^_� peers B�/�}@ , .., /�}�_� E F to cluster 2 . As a
result, cluster 1 retains only peers close to its associate-head
/ �Q�����*� . (Because > ( / ` ) = > ( / �U�����*� ) + < ( / �U�r���f� , / ` ).)

(2) Select /�}���r�U� = /�}@ and /�}�Q�����*� = /�}E to be the head and
associate-head of cluster 2 , respectively. In addition, make
peers /�}( , .., /�}�_� E children of the associate-head /\}�U�����*� . By
being promoted to be the head and associate-head, /�}�+���U� and
/�}�Q�����*� will be closer to the server, thus improving their end-
to-end delay which used to be poorest.

Case 2: ��% (0, H-1):
Let � G�� be a Boolean value, true if and only if / G currently

links to the layer-(� -1) associate-head of /I� . Clearly, ��G�G = 0
for all | because of the C-rules. We follow the steps below:

(1) Partition BC/D@ , .., / � F into two sets � and � such that
the condition � �!� , � ���L% [ � , ��� ] is satisfied first, and then
aw=o���_��� =����_  i ��G¡�l ¢�W��G£n is minimized. Set � will remain in
cluster 1 and set � will be moved to cluster 2 . Since after the
split the peers in 1 cannot link to peers in 2 and vice versa,
this condition helps reduce the number of peer reconnections
resulted from the split.

(2) For each peer /-GL%$� and /p�[%$� such that ��G¡�¤� 0,
remove the link from /HG to the layer-(� -1) associate-head of
/¥� , and select a random peer in set � other than /I� to be the
new parent for this associate-head. Inversely, for each peer / G
%\� and / � %�� such that � G�� � 0, a similar procedure takes
place.

(3) We need a head for cluster 2 . This head will appear
at the super cluster of / ���r�U� , thus abandoning its current
children. To minimize the number of reconnections, the head

is chosen to be the peer /�}�+���U� |£�p� having the smallest degree.
Each abandoned child will reconnect to a random foreign head
appearing in � - BC/\}�+���U� F . We also choose the peer /�}�U���r�f� in
� having the second-smallest degree to be the associate-head
for cluster 2 .

Case 3: � = 
 - 1
In this case, we have / ���r�U� = / �U�����*� = � . We firstly follow

the three steps as in the case �{% (0, 
 -1). Further steps
are explained as follows. Before the split, the server links to
its clustermates and probably some foreign subordinates at
layer � -1 = 
 -2. After the split, the server’s highest layer
becomes � +1 = 
 and the server can no longer link to its
current children due to the C-rules. Therefore, each abandoned
child at layer � -1 will reconnect to a random foreign head
appearing in set � , and each abandoned child at layer � will
reconnect to the new associate-head of 1 chosen to be a peer
Y¦%�� having the minimum degree. To enforce the C-rules,
this associate-head Y must get the content from a foreign head.
We can choose /�}�+���U� at layer � +1 to be this foreign head. The
split procedure at the highest layer is illustrated in Fig. 4(b).

It might happen that the super cluster becomes oversize due
to admitting /�}�+���U� , hence a similar split takes place. In this
case, which is not frequent, the split is helpful anyway since
the super cluster is close to be oversize. The split algorithm is
run locally by the head of the cluster to be split. The results
will be sent to all peers that need to change their connections.
Since the number of peers involved in the algorithm is a
constant, the computational time to get out the results is not
a major issue. The main overhead is the number of peers that
need to reconnect. However, the theorem below tells that the
overhead is indeed small.
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Theorem 6: The worst-case split overhead is O( � ).
Proof: Since computations for the other two cases are

similar, let us compute the worst-case split for the case �
% (0, 
 -1). In the algorithm for this case, Step 2 requires
aw=o���_��� =����_  i ��G¡�§ {�R�¡G¨n peers to reconnect. This value must
equal the number of associate-heads at layer �A��� . Therefore,
Step 2 requires at most � peers to reconnect. In Step 3, the
number of former children of /\}�+���Q� is less than or equal to
the number of its foreign subordinates, hence at most ( ��� -
1) of them need to reconnect. Furthermore, at most ( ��� -2)
peers need to reconnect to /\}�U�����*� . /�}�+���U� and /�}�U�r���f� need to
reconnect too. In total, the split procedure needs at most � +
( ��� - 1) + ( ��� - 2) + 2 = � + 5�� - 1 peers to reconnect. Since
� is greater but close to ��� , the theorem has been proved.

2) Cluster Mergence: Cluster mergence is always carried
out from top to bottom in the administrative organization. In
other words, a mergence at layer � is only accomplished only
if every layer-(� +1) cluster has a size at least � . In case a
layer-(� +1) cluster is undersize, it will be merged first before
the layer-� mergence takes place.

We consider an undersize layer-� (�-% [0, 
 -2)) 2 cluster 1
having head /D© and associate-head 0h© . We combine it with
a cluster 2 that is at the same layer and has the smallest size.
Suppose that cluster 2 has head /Dª and associate-head 0�ª .
There are two cases: (1) Either /~© or /Iª is the head at layer
� +1, and (2) Neither of them is.

In the first case (illustrated in Fig. 5(a)), without loss of
generality, suppose that /~© is the head at layer � +1. The
following changes are made to merge 1 and 2 :

(1) / © and 0 ª are chosen to be the head and associate-head
of the new cluster 1 + 2 , respectively. To enforce the C-rules,
all the other members of 1 + 2 reconnect to 0«ª .

(2) Furthermore, / ª cannot appear at layer � +1 anymore,
thus abandoning its current layer-� children if any. To over-
come this, the head of each layer-� child (except for 0 © if it
happens to be such a child) selects a non-head clustermate at
layer-(� +1), that currently has the minimum degree, to be the
new parent of that child.

(3) At layer � +1: In case / ª used to be the associate-
head, we need to elect a new associate-head. The head / ©
simply selects the clustermate having the smallest degree as the
associate-head, and informs the other clustermates to reconnect
to this associate-head.

In the second case (illustrated in Fig. 5(b)) where neither
/ © nor / ª is the head at layer � +1, if one of them is the
associate-head at layer � +1, we select it to be the head of
1 + 2 . If neither is associate-head, supposing / © has a higher
degree, we select /D© to be the head of 1 + 2 , and vice versa.
Without loss of generality, we assume /x© is the head of 1 + 2 .
The subsequent steps are below:

(1) Since / ª no longer appears at layer � +1, all its layer-
� children, if any, must reconnect. These children are simply
redirected to /I© at layer � +1.

(2) We also need an associate-head for 1 + 2 . If the size of
1 is larger than that of 2 , 0 © becomes the associate-head of
1 + 2 . Otherwise, 0 ª is chosen as the head. Supposing 0 ª is

2The case ¬ = 3 -2 is handled similar with minor modification.

the associate-head, all the other members of 1 + 2 except for
/I© will reconnect to 0hª .

(3) No further work is necessary if the current parent of 0 ª
is not / © . However, if this happens 0 ª needs a new parent
because after the mergence 0 ª and / © belong to the same
cluster at layer � . This new parent is chosen to be a layer-(� +1)
non-head clustermate of / © , that has the smallest degree.

The merge procedure runs centrally at the head of 1 with
assistance from the head of 2 . Since the number of peers
involves is at most a constant, the computational complexity
should be small. In terms of number of reconnections, the
worst-case overhead is resulted from the theorem below.

Theorem 7: The worst-case merge overhead is V_� .
Proof: In either case, the number of peers required to

reconnect is at most the number of peers in 1 + 2 plus the
number of layer-� children of /~© (or /Dª ). Therefore, no
more than � + ��� + ��� = Vk� peers need to reconnect. The
theorem has been proved.

F. Performance Optimization

Under network dynamics, the administrative organization
and multicast tree can be periodically reconfigured to provide
better quality of service to clients. A strategy we can follow
is to dynamically balance the service load among the peers,
thus preventing network bottleneck. For instance, a peer busy
serving many children might consider switching its parenthood
for some children to another non-head clustermate which is
less busy. Service load should be balanced based on not only
the number of children a peer has but also its bandwidth
capacity. To this goal, we compute for each peer the ratio
between its degree to its bandwidth capacity and attempt to
equalize this ratio among peers.

Let us focus on balancing the service load among peers
in a layer-� cluster (��� 0). According to the C-rules, the
head of this cluster, except for the server at layer 
 -1, does
not link to any other peer. Therefore, only its subordinates
are eligible for transferring service load. Additionally, since
the associate-head must always be the parent of all other
non-head clustermates, we should only consider transferring
service load from a non-head non-associate-head member / to
another non-head member 0 . Suppose that / currently links
to foreign subordinates � @ , � E , .., �� , and probably to some
other clustermates. Hence, its degree < ( / ) is ® + ¯ , where
¯ equals zero for the case / is not the associate-head, and
equals the number of such clustermates otherwise. / follows
the steps below to transfer the service load, whose result does
not violate the C-rules: (In this algorithm, ° (.) defines the
bandwidth capacity of a peer.)

1. For( | = 1; |[6® ; | ++)
1.1. Select a non-head clustermate 0 :

0 is not the head of �±G
( �³²´ ² - �³µ´ µ ) E - ( �³² d @´ ² - �³µ�¶o@´ µ ) E � 0
( �³²´ ² - �³µ´ µ ) E - ( �³² d @´ ² - �³µ�¶o@´ µ ) E is max

1.2. If such 0 exists
1.2.3. Redirect � G to 0
1.2.4. Update < = and <O· accordingly
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Fig. 5. Cluster Merge: A small cluster is merged with another cluster to make a larger cluster whose size is between 4 and �T4

In this algorithm, / transfers some children to another
clustermate 0 if doing so minimizes the difference between
the service load of / and that of 0 . Even though this only
affects a few peers (at most ��� -1), frequently activating the
algorithm might cause many peer reconnections and thus result
in discontinuity of client playback. Therefore, we suggest
that a peer run the load-balancing procedure when its degree
becomes larger than a value ¼ chosen appropriately, such as
what follows. We consider a layer-� (�D�z
 -1) cluster with �
members excluding the head: /D@ , /-E , .., / � where /I@ is the
associate-head. Due to the C-rules, we must have a G e �G e @ <�=��
= �k� . Since we would like to balance

�³² �´ ² � , the best value

for < = � is <	½ = �j�89¾° = � / a `fe �`fe @ ° =o¿ . Since it is feasible
to include the bandwidth capacity together with the degree in
the control information exchanged in the control protocol, this
value can be computed easily. We can choose ¼ = 2 < ½ .

III. ALTERNATIVE SOLUTION: DIRECT ZIGZAG

We presented the first design of the Zigzag approach in [6],
[7]. In this early alternative, the C-rules is the same except
that all the non-head members of a cluster receive the content
directly from a foreign head in the super cluster, hence no need
for the role of associate-head. We call this design direct Zigzag
and therefore call the design in the previous section indirect
Zigzag because the non-head members of a cluster get the
content indirectly from a foreign head through their associate-
head. For abbreviation, we refer to these two schemes as D-
Zigzag and I-Zigzag, respectively.

Fig. 6 illustrates an example of the multicast tree resulted
from D-Zigzag. The longest path from the server to any
peer has to visit each layer only once and in such a visit
goes through one and only one node. The only exception
applies to the highest layer where the server links to all of
its subordinates. Therefore, the multicast tree height is at most
the number of layers 
À6q�����O)+� +1. In other words, D-Zigzag
results in a shorter multicast tree than I-Zigzag does. However,
we can intuitively see that the peer degree in D-Zigzag is
higher than that in I-Zigzag, thus the former does not handle
peer bottleneck as well as the latter does. Table I gives a
theoretical comparison between these two alternatives, which
shows a significant improvement in I-Zigzag over the other.
The algorithms of D-Zigzag and proofs for its performance
analyses can be found in [7].

It is our suggestion that I-Zigzag should be used for most
P2P streaming systems due to its scalability, robustness, and
efficiency. However, for a live streaming system consisting of
high-capable clients, the peer bottleneck and control overhead
may not be severe. In this case, D-Zigzag is more preferable
because this scheme would provide a high level of content
liveness.

IV. SIMULATION STUDY

The last section provided the worst-case analyses of the
Zigzag approach. To investigate its performance under various
scenarios, we carried out a simulation-based study. Besides
evaluating performance metrics mentioned in the previous
sections, i.e., peer degree, join/failure overhead, split/merge
overhead, and control overhead, we also considered Peer
Stretch and Link Stress (defined in [2]). Peer Stretch is the
ratio between the length of the data path from the server to
a peer in our multicast tree to the length of the shortest path
between them in the underlying network. The pure unicast
approach always has the optimal peer stretch. The stress of
a link is the number of times the same packet goes through
that link. An IP Multicast tree always has the optimal link
stress of 1 because a packet goes through a link only once. An
application-level multicast scheme should have small stretch
and stress to keep the end-to-end delay short and the network
bandwidth efficiently utilized.

We used the GT-ITM Generator [8] to create a 10,000-node
transit-stub graph as our underlying network topology. The
server’s location is fixed at a stub-domain node. We inves-
tigated a system with 5000 clients located randomly among
the other stub-domain nodes. Therefore, the client population
accounts for 5000/10,000 = 50% of the entire network. We
set the value � to 5, hence each cluster has at most 15 and
no less than 5 peers. We studied three scenarios, the first
investigating a failure-free system running Zigzag, the second
investigating a system running Zigzag and allowing failures,
and the third comparing two systems, one running Zigzag
and the other running NICE [3]. We found that the I-Zigzag
alternative provided better performance values than the D-
Zigzag alternative did, which backs our theoretical comparison
shown in Table I. Due to paper length restrictions, we only
report the results for the I-Zigzag scheme in the following
sections and invite the reader to [7] for the D-Zigzag scheme’s
results.
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Fig. 6. Direct Zigzag: All non-head members of a cluster must receive the content from one of their foreign heads (k=4, H=3)

TABLE I
I-ZIGZAG VERSUS D-ZIGZAG: WORST-CASE OVERHEAD ANALYSES

Zigzag Alternatives Join Failure Degree Merge/Split Control
Direct O( 4+Á¡Â*ÃUÄCÅ ) O( 4jÆ ) O( 4jÆ ) O( 4jÆ ) O( 4+Á¡Â*ÃUÄQÅ )

Indirect O( 4+Á¡Â*Ã Ä Å ) O( 4 ) O( 4 ) O( 4 ) O( 4+Á¡Â*Ã Ä Å )

(a) (b)
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Fig. 7. 5000 Joins: Join and Split Overhead

A. Scenario 1: No Failure

In this scenario, as 5000 clients joined the system, we
collected statistics on control overhead, node degree, peer
stretch, and link stress. We also estimated the join overhead
and split overhead accumulated during the joins.

The overhead of a join is measured as the number of peers
that the new client has to contact before being added to the
multicast tree. Fig. 7(a) shows that on the average, a new client
needs to contact 20 clients. In the worst case, a new client has
to contact 28 clients, or 0.56% of the client population. The
join overhead increases slowly as more clients join. However,
this manner is not monotonic; in fact, the overhead for a join
after a significant split takes place is rapidly reduced. This
is understandable because a split on an oversize cluster helps
reduce the node degree, thus the new client needs to contact
fewer peers. We can see this correlation between the join
procedure and split procedure in Fig. 7(a) and Fig. 7(b): a
significant increase in split overhead corresponds to a rapid
decrease in join overhead.

In terms of split overhead, since we wanted to study the
worst scenario, we opted to run a split whenever detecting a
cluster is oversize. However, as illustrated in Fig. 7(b), small
split overhead is incurred during the joins of 5000 clients.
There are totally 555 splits and the worst-case split requires
only 19 reconnections. Most of the time, a split requires about
8 peers to reconnect. This accounts for only 8/5000 = 0.16%
of the client population.

Fig. 8(a) shows the out-degrees for all 5000 peers. The thick
line at the bottom represents the degrees of the leaves which
are 0-degree. Although the theoretical analysis in Section
II-B shows that the worst-case degree is 5�� -3 = 27, our
simulation found that all peers forward the content to no more
than 13 other peers. Thus, I-Zigzag handles peer bottleneck
efficiently, and furthermore distributes the service load among
the peers fairly (stdev = 2.648). In terms of control overhead,
as shown in Fig. 8(b), most peers have to exchange control
states with only 13 others. The dense area represents peers at
layers close to layer 0 while the sparse area represents peers
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Fig. 8. 5000 Clients: Node Degree and Control Overhead

at higher layers. Those peers at high layers do not have a
heavy control overhead either; most of them communicate with
around 20 peers, only 0.4% of the client population. This can
be considered lightweight, taking the fact that the exchanged
control information is small in size.

The study on link stress and peer stretch results in Fig. 9.
I-Zigzag has a low stretch of 6.13 for most of the clients,
and a link stress of 4.0 for most of the underlying links used.
Especially, these values are quite fairly distributed (see the
two dense areas in both figures). We recall that the client
population in our study accounts for 50% of the entire network
in which a pair of nodes have a link with a probability of 0.5.
Therefore, the results we got are promising.

B. Scenario 2: Failure Possible

In this scenario, we started with the system consisting of
5000 clients, which was built based on the first scenario study.
We let a number (500, 1000, 1500, 2000, 2500) of peers fail
sequentially and evaluated the overhead for recovery and the
overhead of mergence during that process. Fig. 10(a) shows
the results for recovery overhead as failures occur. We can
see that most failures do not affect the system because they
happen to layer-0 peers (illustrated by a thick line at the
bottom of the graph). For those failures happening to higher-
layer peers, the overhead to recover each of them is small
and less than 14 reconnections (no more than 0.5% of the
client population). Furthermore, the overhead to recover a
failure does not really depend on the number of clients in the
system. This substantiates our theoretical analysis in Section
II-D.2 that the recovery overhead is always bounded by 5�� -
2 = 28 regardless of the client population size. Even though
the theoretical upper bound overhead is 28, the worst-case
overhead from our simulation study turns out to be only a
half (only 14 reconnections).

In terms of merge overhead, the result is exhibited in
Fig. 10(b). There are totally 148 calls for cluster mergence,
each requiring 5 peers on average to reconnect. In the worst
case, only 11 peers need to reconnect, which accounts for
no more than 0.44% of the client population. This study is
consistent with our theoretical analysis in Section II-D.2 that
the merge overhead is always small regardless of the client
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Fig. 11. I-Zigzag vs. NICE: Maximum Node Degree

population size. More interestingly, the worst merge overhead
in our simulation (11 reconnections) is a lot smaller than
the theoretical worst-case overhead ( Vk� = 35 reconnections)
implied in Theorem 7.

C. Scenario 3: I-Zigzag versus NICE

We compared the performances between I-Zigzag and
NICE. NICE was recently proposed in [3] as an efficient P2P
technique for streaming data. NICE also organizes the peers
in a hierarchy of bounded-size clusters as in our approach.
However, NICE and I-Zigzag are fundamentally different due
to their own multicast tree construction and maintenance
strategies. For example, NICE always uses the head of a cluster
to forward the content to the other members, whereas we use
the associate-head instead.

We worked with the following scenario. The system initially
contained only the server and stabilized after 3000 clients
join sequentially. Afterwards, we ran an admission control
algorithm, which is a loop of 2000 runs, each run letting a
client fail with probability ÇÈ% [0.2, 0.8] or a new client join
with probability 1-Ç . After the admission control algorithm
stopped, we collected statistics on the trees generated by I-
Zigzag and NICE, respectively.

Fig. 11 exhibits an advantage of I-Zigzag over NICE in
terms of peer bottleneck. I-Zigzag has a maximum peer degree
only half of the maximum degree of NICE. This simulation
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Fig. 10. Failure and merge overhead as 2500 peers fail

result is consistent with the theoretical analyses. Indeed, [3]
shows that the peer degree in NICE is O( �	�'���O)+� ) while our
theoretical analyses have shown that the peer degree in I-
Zigzag is O( � ) only.

Fig. 12 and Fig. 13 show the average-case and worst-
case results, respectively, for other metrics including control
overhead, join overhead, failure overhead, and link stress.
Though the two approaches provide close average-case results,
I-Zigzag is superior to NICE because the former deals with the
worst-case scenarios better. The maximum control overhead of
our technique is about 60% of that of NICE (Fig. 13(a)), and
the join overhead is always about 3 or 4 reconnections fewer
than that of NICE in both average and worst cases (Fig. 12
and Fig. 13(b)).

Recovery overhead was measured for each failure during
the period of the 2000-run loop. By enforcing our C-rules, our
recovery algorithm is more efficient than that of NICE. Indeed,
a failure happens to a peer at its highest layer � in NICE
requires ��9���� peers to reconnect. Since � can be �����	)+� , the
recovery overhead in this scheme can be ���	�'���O)�� . According
to our theoretical analyses, the Zigzag approach requires at
most a constant number of reconnections in a recovery phase,
regardless of how many peers are in the system. Consequently,
we can see in Fig. 13(c) that I-Zigzag clearly prevails NICE in
terms of maximum failure overhead. We note that the average

failure overhead values for both schemes can be smaller than
1 because there are many layer-0 peers and their failure would
require zero reconnection.

The average link stress of I-Zigzag is close to that of NICE,
however the worst-case link stress of the former is slightly
better, as shown in Fig. 13(d). This is no way by accident, but
is rooted from the degree bound of each scheme. The worst
case degree is O( �	�����	� ) in NICE, while bounded by O( � )
in I-Zigzag. Hence, it is more likely for NICE to have many
more identical packets being sent through an underlying link
near heavy loaded peers. In this study, where � = 5 and �É6
5000, the two curves are quite close because �'���O)+� is close
to � . If the system runs in a larger underlying network with
many more clients, �'��� ) � will be a lot larger than � , and we
can expect that link stress in our technique will be sharply
better than that in NICE.

V. RELATED WORK

Several techniques have been proposed to address the prob-
lem of streaming media on the Internet. Most of them try to
overcome the lack of IP Multicast, which makes the problem
challenging, by implementing the multicast paradigm at the
application layer based on IP Unicast services only. They can
be categorized into two classes: overlay-router approach and
peer-to-peer approach.
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Zigzag Nice Zigzag Nice Zigzag Nice Zigzag Nice
0.2 12.08536 12.35147 18.92733 22.5788 1.014888 0.981865 3.851808 3.886655
0.3 11.61025 12.0441 19.13317 22.1099 1.081761 0.97099 3.781343 3.809562
0.4 11.56818 12.1305 18.83806 22.32767 1.085608 1.139364 3.66275 3.655614
0.5 11.31591 11.62467 18.42239 21.50463 1.178357 0.940239 3.57236 3.535413
0.6 11.03657 11.32126 18.63507 21.80835 1.100749 1.054276 3.393512 3.399871
0.7 10.44709 10.82249 18.05811 21.72979 1.233935 0.945927 3.243787 3.273842
0.8 9.8914 10.25358 18.22372 21.44774 1.133082 0.983679 3.095078 3.13906

Failure 
Probability

Performance Metrics (Average Case )
Control Overhead Join Overhead Failure Overhead Link Stress

Fig. 12. I-Zigzag vs. NICE: Average Case
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Fig. 13. I-Zigzag vs. NICE: Worst Case

In the overlay-router approach [9], [10], [11], [12], [13],
[14], a number of reliable servers are installed across the
network to act as the software routers with multicast function-
ality. These routers are interconnected according to a topology
which forms an overlay for running the services. The content is
transmitted from the source to a set of receivers on a multicast
tree consisting of the overlay routers. A new receiver joins
an existing media stream by connecting to an overlay router
appearing on the delivery path to an existing receiver. This
approach is designed to be scalable since the receivers can get
the content not only from the source, but also from software
routers, thus alleviating bandwidth demand at the source.

The peer-to-peer (P2P) approach assumes no extra resources
such as the dedicated servers mentioned above. A multicast
tree involves only the source and the receivers, thus avoiding

the complexity and cost of deploying and maintaining extra
servers. Since we employ this approach, we discuss the differ-
ences between our technique and the existing P2P techniques
below.

[15] introduced a simple P2P scheme for video-on-demand
services, which seems to be the first P2P proposal to sup-
port streaming applications. However, it neither mentions the
stability of the system under network dynamics nor analyzes
the protocol overheads involved. [4] proposed SpreadIt which
builds a single distribution tree of the peers. A new receiver
joins by traversing the tree nodes downward from the source
until finding one with unsaturated bandwidth. Spreadit has
to get the source involved whenever a failure occurs, thus
vulnerable to disruptions due to the severe bottleneck at
the source. Additionally, orphaned peers reconnect by using
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the join algorithm, resulting in a long blocking time before
the their service can resume. CoopNet [5] employs a multi-
description coding method for the media content. In this
method, a media signal is encoded into several separate
streams, or descriptions, such that every subset of them is
decodable. CoopNet builds multiple distribution trees spanning
the source and all the receivers, each tree transmitting a
separate description of the media signal. Therefore, a receiver
can receive all the descriptions in the best case. A peer failure
only causes its descendant peers to lose a few descriptions.
The orphaned are still able to continue their service without
burdening the source. However, this is done with a quality
sacrifice. Furthermore, CoopNet puts a heavy control overhead
on the source since the source must maintain full knowledge
of all distribution trees.

Narada [2], [16] focuses on multi-sender multi-receiver
streaming applications, maintains a mesh among the peers,
and establishes a tree whenever a sender wants to transmit
a content to a set of receivers. Narada only emphasizes on
small P2P networks. Its extension to work with large-scale
networks was proposed in [17] using a two-layer hierarchical
topology. To better reduce cluster size, whereby reducing the
control overhead at a peer, the scheme NICE in [3] focuses
on large P2P networks by using the multi-layer hierarchical
clustering idea as we do. However, NICE always uses the
head to forward the content to its members, thus incurring
a high bottleneck of O( �����O)+� ). Though an extension could
be done to reduce this bottleneck to a constant, the tree
height would become O( ����� ) �79m����� ) � ). Our approach, no
worse than NICE in terms of the other metrics, has a worst-
case delay of O( �'���O� ) while keeping the bottleneck bounded
by a constant. Furthermore, the failure recovery overhead in
our approach is upper bounded by a constant while NICE
requires O( �'����)+� ). All these are a significant improvement
for bandwidth-intensive applications such as media streaming.

VTrails [18] is a commercial P2P streaming product. The
broadcast source vTCaster automatically creates a tree struc-
ture based on receiver location and connection type. vTCaster
collects packet-level information from each receiver, dynam-
ically optimizing the tree in order to serve those with high-
speed connections first and connect receivers who are close,
network-wise (within the same ISP network, same company,
etc.). Since vTCast is the central processing server for main-
taining the entire tree, it is doubtful this technique can work
efficiently with a large group of transient receivers. Another
streaming product based on P2P is AllCast [19]. However, it
is hard for us to do a specific comparison with AllCast in the
absence of published information.

A recent work [20] takes into account the heterogeneity of
peers in their bandwidth capacity. Due to this heterogeneity, a
peer may have to receive the content from multiple supplying
peers. [20] investigates an interesting problem of deciding
what media data segments these supplying peers need to send
to the receiving peer. [20] proposed an optimal solution for
this assignment, and techniques to amplify the total system
streaming capacity. Although different from our problem,
theirs motivates us to extend our scheme to consider the case
where a peer may receive the content collectively from more

than one peer.

VI. SUMMARY

This paper discussed the problem of streaming live media
in a large P2P network. We focused on a single source only
and aimed at optimizing the worst-case values for important
performance metrics. The proposed solution, Zigzag, uses a
novel multicast tree construction and maintenance approach
based on a hierarchy of bounded-size clusters. The key in
Zigzag’s design is the introduction of C-rules. Our algorithms
were developed to achieve the following desirable properties:
� High liveness: The end-to-end delay from the media

server to a client is not only due to the underlying
network traffic, but largely depends on the local delays
at intermediate clients due to queuing and processing.
The local delay at such an intermediate client is mostly
affected by its bandwidth contention. We keep the end-
to-end delay small because the multicast tree height is at
most logarithm of the client population and each client
needs to forward the content to at most a constant number
of peers.� Low control overhead: Each client periodically ex-
changes soft-state information only to its clustermates,
parent, and children. Since a cluster is bounded in size
and the client degree bounded by a constant, the control
overhead at a client is small. On average, the overhead
is a constant regardless of the client population.� Efficient join and failure recovery: A join can be ac-
complished without asking more than O( �'���O� ) existing
clients, where � is the client population. Especially,
a failure can be recovered quickly and regionally with
fewer than a constant number of reconnections and
mostly no affection on the server.� Low maintenance overhead: To enforce the rules on the
administrative organization and the multicast tree, main-
tenance procedures (merge, split, and performance refine-
ment) are invoked periodically with very low overhead.
Fewer than a constant number of clients need to relocate
in such a procedure.

We provided both theoretical proofs and simulation studies
to verify the above merits of Zigzag. We also compared Zigzag
to NICE [3], finding that Zigzag is promising in terms of most
performance metrics.
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